If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+4x-1=0
a = 18; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·18·(-1)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*18}=\frac{-4-2\sqrt{22}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*18}=\frac{-4+2\sqrt{22}}{36} $
| 3x-9(2)=3 | | 24-1.5y-9y=3 | | 2a-7=a-3 | | 1/3(y-3)-1/4(y-4=1/6 | | (2x+7)^0.5-(x+7)^0.5=1 | | 20-4q=-8 | | 8/25=y/5=8/10 | | 2w+12=10 | | 8.3=-1.6c1.9 | | 8.3=-1.6c+9.6 | | 1/4a*2+4=2a | | 5=(x-2)(x-3) | | 18-3=5x+2 | | 5x+70=88 | | 5x^2-4=x-2 | | 10m+6=7m | | 5/3f+3=2f+2 | | 3(2z-6)+3=2(z+6)+1 | | o/2+4=o-2 | | x2-x-360=0 | | S-3=s/2+2 | | j-4/2=j-5 | | 6(i-8)=2i-12 | | l+8=4l-4 | | 11(f+1)-10=2(2f-1)-4 | | 7-3e=11+e | | 13x+26=3x-34 | | x/5/15=64 | | 3x-3=6x+18 | | 9x+16=6x+1 | | -12x+20=-10x+32 | | 13x+24=3x-26 |